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Abstract. We investigate the critical behaviour of a one-dimensional non-attractive lattice gas
model that is the continuous-time, ‘Hamiltonian limit’ version of the Domany–Kinzel (Domany E
and Kinzel W 1984 Phys. Rev. Lett. 53 311) cellular automaton in one of its parameter subspaces.
Our exact numerical diagonalizations and finite-size scaling data seem to indicate that the phase
transition in the model is in the directed percolation (DP) universality class of critical behaviour,
as would be expected on the basis of the DP conjecture.

The Domany–Kinzel (DK) probabilistic cellular automaton (PCA) [1] is one of the most
studied PCAs in the physics literature, because it is the most general left–right symmetric
one-dimensional PCA, and has the interesting property of having the mixed site–bond directed
percolation (DP) process on the square lattice as one of its instances. Its defining rules are
given in table 1. The mixed site–bond DP process is given by assigning a probability s ∈ [0, 1]
for a site to be present in the lattice, and a probability b ∈ [0, 1] for a bond to exist between
any two sites on the lattice. The mixed DP problem consists in finding the values of s and
b for which an infinite cluster of sites connected by the bonds occurs such that one can walk
unidirectionally in it, say to the south and to the east indefinitely. In the DK PCA this problem
is obtained by choosing the transition probabilities x = 0, y = sb and z = sb(2 − b). For
s = 1 one obtains the pure bond DP problem, whilst for b = 1 one obtains the pure site DP
problem.

In this paper we investigate numerically the critical behaviour of a continuous-time one-
dimensional non-attractive lattice gas for which some lower bounds on the critical points of the
PCA version were given recently [2]. The model is related to the DK PCA in one of its parameter
subspaces, and, although the model is not on the mixed site–bond DP parameter subspace of
the DK PCA, our numerical data indicate that it presents a DP-compatible dynamical critical
exponent, as would be expected on the basis of the DP conjecture [3].

Let n
(t) ∈ {0, 1} denote the occupation number of the site 
 ∈ � at the integer instant t ,
with � ⊂ Z a finite lattice with |�| = L sites and periodic boundary conditions 
 + L ≡ 
.
The model we are interested in is the continuous-time version of the PCA defined by the rules

n
(t + 1) =
{

(n
−1(t) + n
+1(t)) mod 2 with probability p

0 with probability 1 − p.
(1)

The rule table for this PCA is given in table 2. From tables 1 and 2 we see that our PCA is
equivalent to the DK PCA with rates x = 0, y = p and z = 0. We thus see that unless we take
the unphysical value b = 2 in the site–bond DP subspace of the DK PCA, this model does not
belong to that subspace.
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Table 1. Rule table for the DK PCA. The first line gives the initial neighbourhood; the other two
lines give the probability with which the state listed on the left is reached by the central bit.

000 001 010 011 100 101 110 111

0 1 − x 1 − y 1 − x 1 − y 1 − y 1 − z 1 − y 1 − z

1 x y x y y z y z

Table 2. The same as table 1 for the PCA defined by equation (1).

000 001 010 011 100 101 110 111

0 1 1 − p 1 1 − p 1 − p 1 1 − p 1
1 0 p 0 p p 0 p 0

Our approach in constructing the continuous-time version for the above PCA is to take its
non-diagonal transitions, i.e. those transitions for which the final state differs from the initial
state, and associate with them a stochastic lattice gas with transition rates given by the original
PCA rules. This approach has been used before in the PCA literature [4], and is equivalent to
the so-called ‘Hamiltonian’ or ‘strong anisotropic’ limit for the transfer matrixes of equilibrium
lattice models [5].

As is well known [6], we may write the master equation for interacting lattice gases as a
Schrödinger-like equation in Euclidean time,

d

dt
|P(t)〉 = −H |P(t)〉 (2)

with |P(t)〉 the generating vector of the probabilities P(n, t) = 〈n|P(t)〉 of observing the
configuration n = (n1, n2, . . . , nL) ∈ {0, 1}� at instant t , and with the infinitesimal generator
H of the Markov semigroup playing the role of the Hamiltonian. For the non-diagonal
transitions of the PCA defined by equation (1), the operator H can be written as

H = −
L∑


=1

H
−1,
,
+1 (3)

with the three-body stochastic transition matrix H
−1,
,
+1 given by

H
−1,
,
+1 =




· · 1 · · · · ·
· −p · 1 − p · · · ·
· · −1 · · · · ·
· p · −1 + p · · · ·
· · · · −p · 1 − p ·
· · · · · · · 1
· · · · p · −1 + p ·
· · · · · · · −1




(4)

where the three-site basis vectors are ordered as usual, (0, 0, 0) ≺ (0, 0, 1) ≺ · · · ≺ (1, 1, 0) ≺
(1, 1, 1), and the dots indicate null entries. Proper tensorization of the above three-body matrix
with unit matrices in order to obtain the full matrix H is understood. Notice that the elements
in the columns of H
−1,
,
+1 (and consequently of H ) add to zero due to the conservation of
probabilities, and that its non-diagonal elements are positive, since 0 � p � 1. Identifying a
particle with the up-spin state and a hole with the down-spin state in the σ z basis, the transition
matrix H
−1,
,
+1 above is seen to be equivalent to the non-Hermitian quantum spin operator

H
−1,
,
+1 = 1
2 (σ x


 − 1)[1 + (1 − p)σ z

 + pσz


−1σ
z

 σ z


+1] (5)
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where σx and σ z are the usual Pauli spin- 1
2 matrixes. The transition matrix (4) resembles

the analogous matrix for the basic contact process, but with non-standard rates and with the
elementary process 101 → 111 lacking. This lack is the root of the non-attractiveness of
the process. (Loosely speaking, attractive interacting particle systems present a tendency for
clustering, as occurs in ferromagnetic models or in the basic contact process. The precise
mathematical statement of attractiveness can be found in [7].)

The lowest gap in the spectrum of H may be used to perform a finite-size scaling analysis
in the same way as one does in equilibrium problems [8]. Around the critical point p � p∗,
the correlation lengths of the infinite system behave as

ξ‖ ∝ ξz
⊥ ∝ (p − p∗)−ν‖ ∝ (p − p∗)−ν⊥z (6)

where ξ‖ and ξ⊥ are the correlation lengths respectively in the time and space directions, ν‖ and
ν⊥ are the corresponding critical exponents, and z = ν‖/ν⊥ is the dynamical critical exponent.
For finite systems of size L we expect that

ξ−1
‖,L = L−zL�(|p − p∗

L|L1/ν⊥,L ) (7)

where p∗
L, zL and ν⊥,L are the finite versions of p∗z and ν⊥, and �(u) is a scaling function

with �(u � 1) ∼ uν‖ . On general grounds one expects limL→∞ p∗
L, zL, ν⊥,L = p∗, z, ν⊥.

From equations (6) and (7) we obtain

ln[ξ‖,L(p∗
L)/ξ‖,L′(p∗

L)]

ln(L/L′)
= ln[ξ‖,L′′(p∗

L)/ξ‖,L(p∗
L)]

ln(L′′/L)
= zL (8)

which through the comparison of three different system sizes L′ < L < L′′ furnishes
simultaneously p∗

L and zL. Of course, ξ‖,L and the gap E
(1)
L − E

(0)
L = E

(1)
L of H are related by

ξ−1
‖,L = Re {E(1)

L }.
We calculated the gaps of H with the power method, which requires only matrix-by-vector

multiplications that can be carried out efficiently and does not require a diagonalization in the
usual, ‘QR’ sense, a step that may lessen the quality of the data. The version of the power
method we use takes advantage of the presence of absorbing states, and is also suitable for the
investigation of time-dependent properties of Markov chains [9].

Our results for p∗ and z are summarized in figure 1. Curiously enough, despite the
translational invariance of the lattice gas rules the finite-size estimates behaved better for
triplets of lengths of the form L′, L, L′′ = 2
 − 1, 2
, 2
 + 1, 
 ∈ N; i.e., whilst for these
triplets of lengths it was possible to find a p∗

L satisfying the first equality in equation (8), for
the other type of triplets (the even–odd–even ones) that was not always possible, although in
general the difference between the first and the second terms in equation (8) could be made
small, and with a reasonable value of zL, of the same order as the other values found. Both
sets of data behaved irregularly with the system sizes, preventing us from applying the usual
extrapolation algorithms [10,11] to them. We are presumably in the presence of strong finite-
size effects and corrections to scaling. Unfortunately, we were not able to go beyond L = 22 in
our diagonalizations. The L = ∞ values for p∗

L were obtained through a least-squares fit to the
curve xL = x∞ + aL−1, since the data scale well with L−1 (although they do so with L−2 also,
but with a smaller correlation coefficient), whilst for zL we only estimated the mean value of
our data. As expected on the basis of the DP conjecture, namely, that the phase transition about
a single absorbing state in single-component systems with a scalar order parameter and in the
absence of internal symmetries should be in the DP universality class of critical behaviour [3],
our lattice gas shows a DP-compatible exponent z = 1.58 ± 0.04. The most precise value
of z for the DP universality class to date is given by z = 1.580 745 ± 0.000 010 [12]. The
critical point of the model is estimated as p∗ = 0.926 ± 0.004 (LS correlation coefficient
γ = −0.944). This value is slightly higher than the critical value p∗

DK = 0.82 ± 0.01 of the
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Figure 1. Finite-size data for the critical point p∗ and the dynamical critical exponent z of the
model defined in equation (4). The dashed line in the graph for p∗

L is the least-squares linear fit to
the data, whilst the dashed line in the graph for zL represents the best known value of the dynamical
critical exponent of the DP universality class.

corresponding point (x = 0, y = p, z = 0) in the DK PCA [1]. This shift in the critical point
for the lattice gas version of the PCA was observed before in a study similar to the present
one, where the properties of the lattice gas on the line x = 0, y = z (corresponding to the pure
site DP problem) was investigated [4], and is probably a general feature, since asynchronous
dynamics tend to be more noisy than synchronous dynamics.

In summary, we conducted numerical diagonalizations of the infinitesimal generator of the
continuous-time version of a non-attractive PCA that is an instance of the DK PCA. Although
our PCA is not in the site–bond DP subspace of the DK PCA, our data seem to indicate that its
continuous-time version shows DP critical behaviour. Our finite-size data showed an irregular
approach to the infinite-system limit, and this prevented us from obtaining good estimates of
the critical values. It would be interesting to study this lattice gas by time-dependent Monte
Carlo methods in order to obtain more accurate critical values.
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Henkel M and Schütz G 1988 J. Phys. A: Math. Gen. 21 2617

[12] Jensen I 1999 J. Phys. A: Math. Gen. 32 5233


